Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer
نویسندگان
چکیده
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.
منابع مشابه
A New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm
Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...
متن کاملLead-Lag Controllers Coefficients Tuning to Control Fuel Cell Based on PSO Algorithm
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag contr...
متن کاملOne-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach
In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of s...
متن کاملThe simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell
In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...
متن کاملThe effect of inclined radial flow in proton exchange membrane fuel cells performance
Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...
متن کامل